Settings
Settings
Bases: BaseConfig
Application settings, including configurations for vector databases, LLMs, embeddings, and chat models.
vector_db = Field(description='Configuration for the vector database.')
class-attribute
instance-attribute
llm = Field(description='Configuration for the language model.')
class-attribute
instance-attribute
embedding = Field(description='Configuration for the embedding model.')
class-attribute
instance-attribute
chat = Field(description='Configuration for the chat model.')
class-attribute
instance-attribute
validate_vector_db(value)
classmethod
Validate and instantiate the vector_db field.
Parameters:
-
value
(Dict[str, Any]
) –The input configuration for the vector database.
Returns:
-
BaseVectorDBConfig
(BaseVectorDBConfig
) –The instantiated configuration.
Raises:
-
ValueError
–If the type of vector database is unknown.
validate_llm(value)
classmethod
Validate and instantiate the llm field.
Parameters:
-
value
(Dict[str, Any]
) –The input configuration for the language model.
Returns:
-
BaseLLMConfig
(BaseLLMConfig
) –The instantiated configuration.
Raises:
-
ValueError
–If the type of language model is unknown.
validate_embedding(value)
classmethod
Validate and instantiate the embedding field.
Parameters:
-
value
(Dict[str, Any]
) –The input configuration for the embedding model.
Returns:
-
BaseEmbeddingConfig
(BaseEmbeddingConfig
) –The instantiated configuration.
Raises:
-
ValueError
–If the type of embedding model is unknown.
validate_chat(value)
classmethod
Validate and instantiate the chat field.
Parameters:
-
value
(Dict[str, Any]
) –The input configuration for the chat model.
Returns:
-
BaseChatConfig
(BaseChatConfig
) –The instantiated configuration.
Raises:
-
ValueError
–If the type of chat model is unknown.