Vector DB
BaseVectorDB
Bases: ABC
Abstract base class for managing vector database connections.
__init__(config)
Initialize the vector database connection.
Parameters:
-
config(BaseVectorDBConfig) –Configuration for the vector DB connection.
insert_data(data)
abstractmethod
Insert data into the vector database.
Parameters:
-
data(DataFrame) –The data to insert.
query(query_embedding, k=10)
abstractmethod
Perform a similarity search and return matching IDs.
Parameters:
-
query_embedding(List[float]) –The vector to search with.
-
k(int, default:10) –Number of nearest neighbors to return.
Returns:
-
List[str]–List of result IDs.
TigerVectorManager
Bases: BaseVectorDB
Manages vector database operations for TigerGraph.
__init__(config, graph)
Initialize TigerVectorManager.
Parameters:
-
config(TigerVectorConfig | Dict | str | Path) –Config for the vector database connection, given as a config object, dictionary, string, or path to a configuration file.
-
graph(Graph) –Graph instance for managing nodes.
insert_data(data)
Insert data into TigerGraph.
Parameters:
-
data(DataFrame) –DataFrame containing data to be inserted.
query(query_embedding, k=10)
Perform k-NN search on the vector database.
Parameters:
-
query_embedding(List[float]) –The query embedding vector.
-
k(int, default:10) –The number of nearest neighbors to return.
Returns:
-
List[str]–List of identifiers from the search results.
NanoVectorDBManager
Bases: BaseVectorDB
A wrapper class for NanoVectorDB that implements BaseVectorDB.
__init__(config)
Initialize the NanoVectorDBManager.
Parameters:
-
config(NanoVectorDBConfig) –Configuration for NanoVectorDB.
insert_data(data)
Insert data into NanoVectorDB.
Parameters:
-
data(DataFrame) –DataFrame with data to insert.
query(query_embedding, k=10)
Perform a similarity search and return the result IDs.
Parameters:
-
query_embedding(List[float]) –Embedding vector for search.
-
k(int, default:10) –Number of top results to retrieve.
Returns:
-
List[str]–List of IDs from the search results.